Jump to content

Neurotechnology

From Wikipedia, the free encyclopedia

Neurotechnology encompasses any method or electronic device which interfaces with the nervous system to monitor or modulate neural activity.[1][2]

Common design goals for neurotechnologies include using neural activity readings to control external devices such as neuroprosthetics, altering neural activity via neuromodulation to repair or normalize function affected by neurological disorders,[3] or augmenting cognitive abilities.[4] In addition to their therapeutic or commercial uses, neurotechnologies also constitute powerful research tools to advance fundamental neuroscience knowledge.[5][6][7][8]

Some examples of neurotechnologies include deep brain stimulation, photostimulation based on optogenetics and photopharmacology, transcranial magnetic stimulation, transcranial electric stimulation and brain–computer interfaces, such as cochlear implants and retinal implants.

Background

[edit]

The field of neurotechnology has been around for nearly half a century but has only reached maturity in the last twenty years. Decoding fundamental mechanisms and processes of the human mind is essential to interface electronic devices with the nervous system.[9] It is one of the central efforts of the technological revolution based on a fusion of technologies that is blurring the lines between the physical, digital, and biological spheres. The electronic device interface with the nervous system enables monitoring and modulation of neural activity. Successful outcomes will have profound consequences in developing treatment methodologies for neurological diseases and the development of advanced, implantable neurotechnologies as bidirectional interfaces to various parts of the nervous system.[9] Advances in these efforts are associated with developing models based on knowledge about natural processes in biosystems that monitor and/or modulate neural activity. One of the perspective directions evolves through studying the mother-fetus neurocognitive model.[10] According to this model, the innate natural mechanism ensures the correct (balanced) development of the embryonic nervous system.[11] Because the mother-fetus interaction enables the child's nervous system to evolve with adequate biological sentience, similar environmental conditions can treat the injured nervous system. It means that the physiological processes of this natural neurostimulation underly any noninvasive artificial neuromodulation technique.[11] Within the scope of modulating neural activity, this knowledge paves the way for designing and precise tuning noninvasive brain stimulation devices in treating different nervous system diseases by studying the mother-fetus neurocognitive model.[11]

More specialized sectors of the neurotechnology development for monitoring and modulating neural activity are aimed at creating powerful concepts in neuron-like electrodes,[12] hybrid biotic–abiotic electrodes,[13] planar complementary metal-oxide semiconductor systems as platforms for high density electrophysiological mapping,[14] injectable bioconjugate nanomaterials as transducing agents for magnetic and/or electromagnetic forms of neuromodulation and imaging,[15] implantable optoelectronic microchips as sources of neuromodulation and minimally invasive components that use ultrasound as wireless power-transfer and communication vehicles for monitoring neural activity.[16][17]

Many in the field aim to control and harness more of what the brain does and how it influences lifestyles and personalities. Commonplace technologies already attempt to do this; games like BrainAge,[18] and programs like Fast ForWord[19] that aim to improve brain function, are neurotechnologies.

Types

[edit]

Deep brain stimulation

[edit]

Deep brain stimulation is currently used in patients with movement disorders to improve the quality of life in patients.[20]

Transcranial ultrasound stimulation

[edit]

Transcrancial ultrasound stimulation (TUS) is a technique using ultrasound to modulate neural activity in the brain. It is an emerging technique that has shown therapeutic promise in a variety of neurological diseases. [21]

Transcranial magnetic stimulation

[edit]

Transcranial magnetic stimulation (TMS) is a technique for applying magnetic fields to the brain to manipulate electrical activity at specific loci in the brain.[22] This field of study is currently receiving a large amount of attention due to the potential benefits that could come out of better understanding this technology.[23] Transcranial magnetic movement of particles in the brain shows promise for drug targeting and delivery as studies have demonstrated this to be noninvasive on brain physiology.[24]

Transcranial magnetic stimulation is a relatively new method of studying how the brain functions and is used in many research labs focused on behavioral disorders, epilepsy, PTSD, migraine, hallucinations, and other disorders.[23] Currently, repetitive transcranial magnetic stimulation is being researched to see if positive behavioral effects of TMS can be made more permanent. Some techniques combine TMS and another scanning method such as EEG to get additional information about brain activity such as cortical response.[25]

Transcranial direct current stimulation

[edit]

Transcranial direct current stimulation (TDCS) is a form of neurostimulation which uses constant, low current delivered via electrodes placed on the scalp. The mechanisms underlying TDCS effects are still incompletely understood, but recent advances in neurotechnology allowing for in vivo assessment of brain electric activity during TDCS[26] promise to advance understanding of these mechanisms. Research into using TDCS on healthy adults have demonstrated that TDCS can increase cognitive performance on a variety of tasks, depending on the area of the brain being stimulated. TDCS has been used to enhance language and mathematical ability (though one form of TDCS was also found to inhibit math learning),[27] attention span, problem solving, memory,[28] coordination and relieve depression [29][30][31] and chronic fatigue.[32][33]

Electrophysiology

[edit]

Electroencephalography (EEG) is a method of measuring brainwave activity non-invasively. A number of electrodes are placed around the head and scalp and electrical signals are measured.[34] Clinically, EEGs are used to study epilepsy as well as stroke and tumor presence in the brain. Electrocorticography (ECoG) relies on similar principles but requires invasive implantation of electrodes on the brain's surface to measure local field potentials or action potentials more sensitively.

Magnetoencephalography (MEG) is another method of measuring activity in the brain by measuring the magnetic fields that arise from electrical currents in the brain.[35] The benefit to using MEG instead of EEG is that these fields are highly localized and give rise to better understanding of how specific loci react to stimulation or if these regions over-activate (as in epileptic seizures).

There are potential uses for EEG and MEG such as charting rehabilitation and improvement after trauma as well as testing neural conductivity in specific regions of epileptics or patients with personality disorders. EEG has been fundamental in understanding the resting brain during sleep.[34] Real-time EEG has been considered for use in lie detection.[36] Similarly, real-time fMRI is being researched as a method for pain therapy by altering how people perceive pain if they are made aware of how their brain is functioning while in pain. By providing direct and understandable feedback, researchers can help patients with chronic pain decrease their symptoms.[37]

Implants

[edit]

Neurotechnological implants can be used to record and utilize brain activity to control other devices which provide feedback to the user or replace missing biological functions.[38] The most common neurodevices available for clinical use are deep brain stimulators implanted in the subthalamic nucleus for patients with Parkinson's disease.[20]

Pharmaceuticals

[edit]

Pharmaceuticals play a vital role in maintaining stable brain chemistry, and are the most commonly used neurotechnology by the general public and medicine. Drugs like sertraline, methylphenidate, and zolpidem act as chemical modulators in the brain, and they allow for normal activity in many people whose brains cannot act normally under physiological conditions. While pharmaceuticals are usually not mentioned and have their own field, the role of pharmaceuticals is perhaps the most far-reaching and commonplace in modern society. Movement of magnetic particles to targeted brain regions for drug delivery is an emerging field of study and causes no detectable circuit damage.[24]

Ethical considerations

[edit]

Like other disruptive innovations, neurotechnologies have the potential for profound social and legal repercussions, and as such their development and introduction to society raise a series of ethical questions.[39][40][2]

Key concerns include the preservation of identity, agency, cognitive liberty and privacy as neurorights. While experts agree that these core features of the human experience stand to benefit from the ethical use of neurotechnology, they also make a point of emphasizing the importance of preventively establishing specific regulatory frameworks and other mechanisms that protect against inappropriate or unauthorized uses.[1][39][41]

Identity

[edit]

Identity in this context refers to personal continuity, described as bodily and mental integrity and their persistence over time. In other words, it is the individual's self-narrative and concept of self.

While disruption of identity is not a common goal for neurotechnologies, some techniques can create unwanted shifts that range in severity. For instance, deep brain stimulation is commonly used as treatment for Parkinson's disease but can have side effects that touch on the concept of identity, such as loss of voice modulation, increased impulsivity or feelings of self-estrangement.[1][42][43][44] In the case of neural prostheses and brain-computer interfaces, the shift may take the form of an extension of one's sense of self, potentially incorporating the device as an integral part of oneself or expanding the range of sensory and cognitive channels available to the user beyond the traditional senses.[1][45]

Part of the difficulty in determining which changes constitute a threat to identity is rooted in its dynamic nature: since one's personality and concept of self is expected to change with time as a result of emotional development and lived experience, it is not easy to identify clear criteria and draw a line between acceptable shifts and problematic changes.[1][46] This becomes even harder when dealing with neurotechnologies aimed at influencing psychological processes—such as those designed to recude the symptoms of depression or post-traumatic stress disorder (PTSD) by modulating emotional states or saliency of memories to ease a patient's pain.[47][48] Even helping a patient remember, which would seemingly help preserve identity, can be a delicate question: "Forgetting is also important to how a person navigates the world, since it allows the opportunity for both losing track of embarrassing or difficult memories, and focusing on future-oriented activity. Efforts to enhance identity through memory preservation thus run the risk of inadvertently damaging a valuable, if less consciously-driven cognitive process."[1]

Agency

[edit]

Although the nuances of its definition are debated in philosophy and sociology,[49] agency is commonly understood as the individual's ability to consciously make and communicate a decision or choice. While identity and agency are distinct, an impairment in agency can in turn undermine personal identity: the subject may no longer be able to substantially modify their own self-narrative, and may therefore lose their ability to contribute to the dynamic process of identity formation.[46]

The interplay between agency and neurotechnology can have implications for moral responsibility and legal liability.[50][40] As with identity, devices aimed at treating some psychiatric conditions like depression or anorexia may work by modulating neural function linked with desire or motivation, potentially compromising the user's agency.[47][51] This can also be the case, paradoxically, for those neurotechnologies designed to restore agency to patients, such as neural prostheses and BCI-mediated assistive technology like wheelchairs or computer accessibility tools.[52][53] Because these devices often operate by interpreting sensory inputs or the user's neural data in order to estimate the individual's intention and respond according to it, estimation margins can lead to inaccurate or undesired responses that may threaten agency: "If the agent's intent and the device's output can come apart (think of how the auto-correct function in texting sometimes misinterprets the user's intent and sends problematic text messages), the user's sense of agency may be undermined."[1]

Privacy

[edit]

Finally, when these technologies are being developed society must understand that these neurotechnologies could reveal the one thing that people can always keep secret: what they are thinking. While there are large amounts of benefits associated with these technologies, it is necessary for scientists, citizens and policy makers alike to consider implications for privacy.[54] This term is important in many ethical circles concerned with the state and goals of progress in the field of neurotechnology (see neuroethics). Current improvements such as "brain fingerprinting" or lie detection using EEG or fMRI could give rise to a set fixture of loci/emotional relationships in the brain, although these technologies are still years away from full application.[54] It is important to consider how all these neurotechnologies might affect the future of society, and it is suggested that political, scientific, and civil debates are heard about the implementation of these newer technologies that potentially offer a new wealth of once-private information.[54] Some ethicists are also concerned with the use of TMS and fear that the technique could be used to alter patients in ways that are undesired by the patient.[23]

Cognitive liberty

[edit]

Cognitive liberty refers to a suggested right to self-determination of individuals to control their own mental processes, cognition, and consciousness including by the use of various neurotechnologies and psychoactive substances. This perceived right is relevant for reformation and development of associated laws.

See also

[edit]

References

[edit]
  1. ^ a b c d e f g Goering S, Klein E, Sullivan LS, Wexler A, y Arcas BA, Bi G, et al. (April 2021). "Recommendations for Responsible Development and Application of Neurotechnologies". Neuroethics. 14 (3): 365–386. doi:10.1007/s12152-021-09468-6. PMC 8081770. PMID 33942016.
  2. ^ a b Müller O, Rotter S (2017). "Neurotechnology: Current Developments and Ethical Issues". Frontiers in Systems Neuroscience. 11: 93. doi:10.3389/fnsys.2017.00093. PMC 5733340. PMID 29326561.
  3. ^ Cook MJ, O'Brien TJ, Berkovic SF, Murphy M, Morokoff A, Fabinyi G, et al. (June 2013). "Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study". The Lancet. Neurology. 12 (6): 563–71. doi:10.1016/s1474-4422(13)70075-9. PMID 23642342. S2CID 33908839.
  4. ^ Cinel C, Valeriani D, Poli R (31 January 2019). "Neurotechnologies for Human Cognitive Augmentation: Current State of the Art and Future Prospects". Frontiers in Human Neuroscience. 13: 13. doi:10.3389/fnhum.2019.00013. PMC 6365771. PMID 30766483.
  5. ^ Wander JD, Rao RP (April 2014). "Brain-computer interfaces: a powerful tool for scientific inquiry". Current Opinion in Neurobiology. 25: 70–5. doi:10.1016/j.conb.2013.11.013. PMC 3980496. PMID 24709603.
  6. ^ Golub MD, Chase SM, Batista AP, Yu BM (April 2016). "Brain-computer interfaces for dissecting cognitive processes underlying sensorimotor control". Current Opinion in Neurobiology. 37: 53–58. doi:10.1016/j.conb.2015.12.005. PMC 4860084. PMID 26796293.
  7. ^ Kim CK, Adhikari A, Deisseroth K (March 2017). "Integration of optogenetics with complementary methodologies in systems neuroscience". Nature Reviews. Neuroscience. 18 (4): 222–235. doi:10.1038/nrn.2017.15. PMC 5708544. PMID 28303019.
  8. ^ Rawji V, Latorre A, Sharma N, Rothwell JC, Rocchi L (2020-11-03). "On the Use of TMS to Investigate the Pathophysiology of Neurodegenerative Diseases". Frontiers in Neurology. 11: 584664. doi:10.3389/fneur.2020.584664. PMC 7669623. PMID 33224098.
  9. ^ a b Vázquez-Guardado, A., Yang, Y., Bandodkar, A. J., & Rogers, J. A. (2020). Recent advances in neurotechnologies with broad potential for neuroscience research. Nature neuroscience, 23(12), 1522-1536.
  10. ^ Val Danilov, I. (2024). Child Cognitive Development with the Maternal Heartbeat: A Mother-Fetus Neurocognitive Model and Architecture for Bioengineering Systems. In International Conference on Digital Age & Technological Advances for Sustainable Development (pp. 216-223). Springer, Cham. https://doi.org/10.1007/978-3-031-75329-9_24
  11. ^ a b c Val Danilov I. The Origin of Natural Neurostimulation: A Narrative Review of Noninvasive Brain Stimulation Techniques. OBM Neurobiology 2024; 8(4): 260; doi:10.21926/obm.neurobiol.2404260.
  12. ^ Yang, X. et al. Bioinspired neuron-like electronics. Nat. Mater. 18, 510–517 (2019).
  13. ^ Rochford, A. E., Carnicer-Lombarte, A., Curto, V. F., Malliaras, G. G. & Barone, D. G. When bio meets technology: biohybrid neural interfaces. Adv. Mater. 32, e1903182 (2020).
  14. ^ Tsai, D., Sawyer, D., Bradd, A., Yuste, R. & Shepard, K. L. A very large-scale microelectrode array for cellular-resolution electrophysiology. Nat. Commun. 8, 1802 (2017).
  15. ^ Wu, X. et al. Sono-optogenetics facilitated by a circulationdelivered rechargeable light source for minimally invasive optogenetics. Proc. Natl. Acad. Sci. USA 116, 26332–26342 (2019).
  16. ^ Mohanty, A. et al. Reconfgurable nanophotonic silicon probes for sub-millisecond deep-brain optical stimulation. Nat. Biomed. Eng. 4, 223–231 (2020).
  17. ^ Seo, D. et al. Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91, 529–539 (2016).
  18. ^ Nintendo Company of America. BrainAge (2006). Based on the work of Ryuta Kawashima, M.D.
  19. ^ Broman SH, Fletcher J (1999). The changing nervous system: neurobehavioral consequences of early brain disorders. Oxford University Press US. ISBN 978-0-19-512193-3.
  20. ^ a b Gross RE (April 2008). "What happened to posteroventral pallidotomy for Parkinson's disease and dystonia?". Neurotherapeutics. 5 (2): 281–93. doi:10.1016/j.nurt.2008.02.001. PMC 5084170. PMID 18394570.
  21. ^ "TUS". BiomedCentral.
  22. ^ Wassermann EM (January 1998). "Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5-7, 1996". Electroencephalography and Clinical Neurophysiology. 108 (1): 1–16. doi:10.1016/S0168-5597(97)00096-8. PMID 9474057.
  23. ^ a b c Illes J, Gallo M, Kirschen MP (2006). "An ethics perspective on transcranial magnetic stimulation (TMS) and human neuromodulation". Behavioural Neurology. 17 (3–4): 149–57. doi:10.1155/2006/791072. PMC 5471539. PMID 17148834.
  24. ^ a b Ramaswamy B, Kulkarni SD, Villar PS, Smith RS, Eberly C, Araneda RC, et al. (October 2015). "Movement of magnetic nanoparticles in brain tissue: mechanisms and impact on normal neuronal function". Nanomedicine. 11 (7): 1821–9. doi:10.1016/j.nano.2015.06.003. PMC 4586396. PMID 26115639.
  25. ^ Veniero D, Bortoletto M, Miniussi C (July 2009). "TMS-EEG co-registration: on TMS-induced artifact". Clinical Neurophysiology. 120 (7): 1392–9. doi:10.1016/j.clinph.2009.04.023. hdl:11572/145615. PMID 19535291. S2CID 4496573.
  26. ^ Soekadar SR, Witkowski M, Cossio EG, Birbaumer N, Robinson SE, Cohen LG (2013). "In vivo assessment of human brain oscillations during application of transcranial electric currents". Nature Communications. 4: 2032. Bibcode:2013NatCo...4.2032S. doi:10.1038/ncomms3032. PMC 4892116. PMID 23787780.
  27. ^ Grabner RH, Rütsche B, Ruff CC, Hauser TU (July 2015). "Transcranial direct current stimulation of the posterior parietal cortex modulates arithmetic learning" (PDF). The European Journal of Neuroscience. 42 (1): 1667–74. doi:10.1111/ejn.12947. PMID 25970697. S2CID 37724278. Cathodal tDCS (compared with sham) decreased learning rates during training and resulted in poorer performance which lasted over 24 h after stimulation. Anodal tDCS showed an operation-specific improvement for subtraction learning.
  28. ^ Gray SJ, Brookshire G, Casasanto D, Gallo DA (December 2015). "Electrically stimulating prefrontal cortex at retrieval improves recollection accuracy". Cortex; A Journal Devoted to the Study of the Nervous System and Behavior. 73: 188–94. doi:10.1016/j.cortex.2015.09.003. PMID 26457823. S2CID 19886903. We found that stimulation of dlPFC significantly increased recollection accuracy, relative to a no-stimulation sham condition and also relative to active stimulation of a comparison region in left parietal cortex.
  29. ^ Nitsche MA, Boggio PS, Fregni F, Pascual-Leone A (2009). "Treatment of depression with transcranial direct current stimulation (tDCS): a review". Exp Neurol. 219 (1): 14–19. doi:10.1016/j.expneurol.2009.03.038. PMID 19348793. S2CID 695276.
  30. ^ Brunoni AR, Moffa AH, Fregni F, Palm U, Padberg F, Blumberger DM, Daskalakis ZJ, Bennabi D, Haffen E, Alonzo A, Loo CK (2016). "Transcranial direct current stimulation for acute major depressive episodes: meta-analysis of individual patient data". Br J Psychiatry. 208 (6): 522–531. doi:10.1192/bjp.bp.115.164715. PMC 4887722. PMID 27056623.
  31. ^ Tecchio F, Bertoli M, Gianni E, L'Abbate T, Sbragia E, Stara S, Inglese M (2020). "Parietal dysfunctional connectivity in depression in multiple sclerosis". Mult Scler. 27 (9): 1468–1469. doi:10.1177/1352458520964412. PMID 33084529. S2CID 224829189.
  32. ^ Gianni E, Bertoli M, Simonelli I, Paulon L, Tecchio F, Pasqualetti P (2021). "tDCS randomized controlled trials in no-structural diseases: a quantitative review". Scientific Reports. 11 (1): 16311. Bibcode:2021NatSR..1116311G. doi:10.1038/s41598-021-95084-6. hdl:11573/1575485. PMC 8357949. PMID 34381076.
  33. ^ Tecchio F, Cancelli A, Pizzichino A, L'Abbate T, Gianni E, Bertoli M, Paulon L, Zannino S, Giordani A, Lupoi D, Pasqualetti P, Mirabella M, Filippi MM (2022). "Home treatment against fatigue in multiple sclerosis by a personalized, bilateral whole-body somatosensory cortex stimulation". Mult Scler Relat Disord. 63: 103813. doi:10.1016/j.msard.2022.103813. PMID 35597081. S2CID 248967047.
  34. ^ a b Purves D (2007). Neuroscience, Fourth Edition. Sinauer Associates, Inc. p. 715. ISBN 978-0-87893-697-7.
  35. ^ Hämäläinen M (November 2007). "Magnetoencephalography (MEG)". Athinoula A. Martinos Center for Biomedical Imaging.
  36. ^ Farwell LA, Smith SS (January 2001). "Using brain MERMER testing to detect knowledge despite efforts to conceal". Journal of Forensic Sciences. 46 (1): 135–43. doi:10.1520/JFS14925J. PMID 11210899. S2CID 45516709.
  37. ^ deCharms RC, Maeda F, Glover GH, Ludlow D, Pauly JM, Soneji D, et al. (December 2005). "Control over brain activation and pain learned by using real-time functional MRI". Proceedings of the National Academy of Sciences of the United States of America. 102 (51): 18626–31. Bibcode:2005PNAS..10218626D. doi:10.1073/pnas.0505210102. PMC 1311906. PMID 16352728.
  38. ^ Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, et al. (July 2006). "Neuronal ensemble control of prosthetic devices by a human with tetraplegia". Nature. 442 (7099): 164–71. Bibcode:2006Natur.442..164H. doi:10.1038/nature04970. PMID 16838014. S2CID 4347367.
  39. ^ a b Al-Rodhan N (27 May 2021). "The Rise of Neurotechnology Calls for a Parallel Focus on Neurorights". Scientific American. Retrieved 25 Oct 2021.
  40. ^ a b Bublitz C, Wolkenstein A, Jox RJ, Friedrich O (2019-07-01). "Legal liabilities of BCI-users: Responsibility gaps at the intersection of mind and machine?". International Journal of Law and Psychiatry. Neuroscience, Law, and Ethics. 65: 101399. doi:10.1016/j.ijlp.2018.10.002. PMID 30449603. S2CID 53950001.
  41. ^ Yuste R, Goering S, Arcas BA, Bi G, Carmena JM, Carter A, et al. (November 2017). "Four ethical priorities for neurotechnologies and AI". Nature. 551 (7679): 159–163. Bibcode:2017Natur.551..159Y. doi:10.1038/551159a. PMC 8021272. PMID 29120438.
  42. ^ Pham U, Solbakk AK, Skogseid IM, Toft M, Pripp AH, Konglund AE, et al. (2015-01-29). "Personality changes after deep brain stimulation in Parkinson's disease". Parkinson's Disease. 2015: 490507. doi:10.1155/2015/490507. PMC 4325225. PMID 25705545.
  43. ^ Pugh J, Maslen H, Savulescu J (October 2017). "Deep Brain Stimulation, Authenticity and Value". Cambridge Quarterly of Healthcare Ethics. 26 (4): 640–657. doi:10.1017/S0963180117000147. PMC 5658726. PMID 28937346.
  44. ^ Gilbert F, Goddard E, Viaña JN, Carter A, Horne M (2017-04-03). "I Miss Being Me: Phenomenological Effects of Deep Brain Stimulation". AJOB Neuroscience. 8 (2): 96–109. doi:10.1080/21507740.2017.1320319. ISSN 2150-7740. S2CID 55652038.
  45. ^ Hildt E (5 Nov 2019). "Multi-Person Brain-To-Brain Interfaces: Ethical Issues". Frontiers in Neuroscience. 13: 1177. doi:10.3389/fnins.2019.01177. PMC 6849447. PMID 31827418.
  46. ^ a b Baylis F (2013-12-01). ""I Am Who I Am": On the Perceived Threats to Personal Identity from Deep Brain Stimulation". Neuroethics. 6 (3): 513–526. doi:10.1007/s12152-011-9137-1. PMC 3825414. PMID 24273621.
  47. ^ a b Steinert S, Friedrich O (February 2020). "Wired Emotions: Ethical Issues of Affective Brain-Computer Interfaces". Science and Engineering Ethics. 26 (1): 351–367. doi:10.1007/s11948-019-00087-2. PMC 6978299. PMID 30868377.
  48. ^ Bassil KC, Rutten BP, Horstkötter D (2019-07-03). "Biomarkers for PTSD Susceptibility and Resilience, Ethical Issues". AJOB Neuroscience. 10 (3): 122–124. doi:10.1080/21507740.2019.1632964. PMID 31361197. S2CID 198982833.
  49. ^ Wilson G, Shpall S (2016). "Action". In Zalta EN (ed.). The Stanford Encyclopedia of Philosophy (Winter 2016 ed.). Metaphysics Research Lab, Stanford University.
  50. ^ Haselager P (2013-08-01). "Did I Do That? Brain–Computer Interfacing and the Sense of Agency". Minds and Machines. 23 (3): 405–418. doi:10.1007/s11023-012-9298-7. hdl:2066/116450. ISSN 1572-8641. S2CID 7199782.
  51. ^ Goering S, Klein E, Dougherty DD, Widge AS (2017-04-03). "Staying in the Loop: Relational Agency and Identity in Next-Generation DBS for Psychiatry". AJOB Neuroscience. 8 (2): 59–70. doi:10.1080/21507740.2017.1320320. ISSN 2150-7740. S2CID 6176406.
  52. ^ Sellers EW, Vaughan TM, Wolpaw JR (October 2010). "A brain-computer interface for long-term independent home use". Amyotrophic Lateral Sclerosis. 11 (5): 449–55. doi:10.3109/17482961003777470. PMID 20583947. S2CID 4713118.
  53. ^ Ajiboye AB, Willett FR, Young DR, Memberg WD, Murphy BA, Miller JP, et al. (May 2017). "Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration". Lancet. 389 (10081): 1821–1830. doi:10.1016/s0140-6736(17)30601-3. PMC 5516547. PMID 28363483.
  54. ^ a b c Wolpe PR, Foster KR, Langleben DD (2005). "Emerging neurotechnologies for lie-detection: promises and perils". The American Journal of Bioethics. 5 (2): 39–49. doi:10.1080/15265160590923367. PMID 16036700. S2CID 219640810.